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Abstract
We present a general quasiclassical description of parabolic many-electron
quantum dots in the limit of high magnetic fields. The key points of our approach
are the transition to a rotating frame of reference, in order to decouple rotational
and vibrational modes, as well as the recognition and inclusion of the role of
potential anisotropy felt by the vibrational modes. We are able to obtain the
complete wavefunction of quantum dots containing any number of electrons in
the Gaussian form, and present results concerning inter-particle correlation and
deformation of large quantum dots.

1. Introduction

There persists continuous interest in the electronic properties of quantum dots that confine a
small number N of electrons to a volume of nanometric extensions [1–4]. Among the most
stimulating topics of theoretical research performed on quantum dots [3] is the strong electron–
electron correlation which, further enhanced by application of a magnetic field, induces the
formation of Wigner crystallites [5, 6].

These many-body phenomena are hard to calculate since the separation of variables making
use of a single-particle approach is not possible. To a certain extent, the many-body problem
can be managed by mapping it onto an equivalent problem of independent particles moving
in an effective potential as in the density functional [4], Hartree or Hartree–Fock approaches.
However, these techniques are of limited use in the realm of strong inter-particle correlations.

Equally restrictive is the use of the exact diagonalizations [5, 7, 8]. In this approach one
fully accounts for the Coulomb interactions but the ensuing numerical work becomes daunting
when the number of particles exceeds a few. Significant results have been obtained for a small
number of electrons or at very high magnetic fields [9] where the approximation of the lowest
Landau level is applicable.

The composite fermion model [10–12] evolved from the suggestion of replacing bare
electrons by quasiparticles of another type, the composite fermions [13, 14], formed by dressing
the electrons with an even number of magnetic flux quanta. However, it turned out [15] that this
method also becomes rather inaccurate in the regime of very high magnetic fields where one
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expects the Wigner crystal to be formed. The authors of [15] found that the rotating electron
molecule [16] approach becomes superior.

In our earlier work [17, 18] we have shown that the Wigner crystallization as well as the
ground state multiplicity transitions may be successfully addressed employing a quasiclassical
expansion in powers of 1/B . This line of development has led us to an analytical expression for
the many-electron wavefunction for symmetric configurations when all the electrons crystallize
into a single ring.

The purpose of the present paper is to develop a comprehensive quasiclassical theory based
on the aforementioned 1/B expansion and applicable to quantum dots containing an arbitrary
number of electrons. This theory may be regarded as a quantum mechanical generalization
of the classical treatment due to Bedanov and Peeters [19]. Classical Wigner crystallites have
already been addressed experimentally [20]. On the other hand, the frontiers of research
on quantum mechanical phenomena have advanced to embrace the possibility of imaging
the electronic wavefunctions [21]. In this context, the theoretical investigation of electronic
wavefunctions and complex electron configurations in quantum dots is gaining practical
importance. Knowledge of correlation functions may also be relevant with the prospect of
dynamical wavefunction control experiments, already carried out on natural atoms [22].

We consider quantum dots with a circularly symmetric isotropic parabolic confining
potential. However, due to the discreteness of charge the actual symmetry of the dots is lower
and there arises a local anisotropy of the electron–electron interaction which it is necessary to
take into account. The influence of this anisotropy on the shape of the wavefunction does not
disappear even in the limit of extreme magnetic fields. Indeed, we find important corrections
to the previous results [18] which overlooked the potential anisotropy. The proper recognition
of the anisotropy felt by the collective electronic modes is influencing the conditions for
emergence of inter-shell rotations.

The quasiclassical theory is presented in the four subsections of section 2. In the following
section 3 we introduce the quasiclassical correlation functions and use them to describe the
structural properties of quantum dots. Two topics (the calculation of the potential expansion
and the discussion of the anisotropy effects) are discussed in the appendices.

2. Quasiclassical theory

We consider an arbitrary number N of two-dimensional electrons of effective mass m∗ moving
in an external confining potential Vc = 1

2 m∗ω2
0r2 and a perpendicular magnetic field B

described in terms of its symmetric gauge vector potential A = 1
2 [B × r]. It is convenient to

work in the natural dimensionless units defined by using the oscillator length l0 = √
h̄/mω0

as the unit of length and the confinement energy h̄ω0 as the energy unit. Correspondingly,
the dimensionless magnetic field is measured in units �0/2πl2

0 , with �0 = hc/e being the
magnetic flux quantum. The relative strength of the Coulomb coupling between electrons
is then given by the dimensionless coupling constant λ = l0/a∗

B equal to the ratio of the
confinement length to the effective Bohr radius a∗

B = εh̄2/m∗e2. Here ε denotes the dielectric
constant of the medium.

2.1. Lagrangian formalism

Like in the previous—restricted to systems containing less than five electrons—treatment [18]
we face the necessity of switching to a rotating (Eckart) frame of [23, 24] in order to deal
with the compensation of the strong magnetic field by a high value of the ground state angular
momentum M . The change of the reference frame is easily performed in the Lagrangian
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formalism starting with the laboratory frame Lagrangian L = Lmag − V which we explicitly
split into two parts. The first term

Lmag = 1
2

N∑

n=1

{ṙ2
n − [B × rn]ṙn} (1)

is the sum of free-electron Lagrangians in a magnetic field, and the remaining part

V = 1

2

N∑

n=1

r2
n +

N∑

n,m=1
n>m

λ

|rn − rm| (2)

is the total (the confinement plus the Coulomb interaction) potential energy.
We begin our progress towards the quasiclassical theory from the extreme limit of an

infinite magnetic field. In these circumstances the kinetic energy is completely frozen out, and
the electrons crystallize into a finite-size Wigner molecule. We determine the ground state
configuration of an N-electron system by using a numerical Monte Carlo procedure [19] to
minimize the potential energy (2), and thereby obtain a set of vectors an giving the equilibrium
positions of the electrons. Generally, the equilibrium configuration consists of a number of
deformed concentric rings.

Paralleling the development in the special single-ring case [18] we introduce local
coordinate systems for the individual electrons. Thus, the coordinate xn measures the deviation
of the nth electron from its equilibrium position in the radial direction (i.e. along an), and
yn anticlockwise in the azimuthal direction. We find it convenient to collect the electron
coordinates into two N-component vectors

x = {x1, x2, . . . , xN }, y = {y1, y2, . . . , yN }, (3)

and introduce the corresponding vector

a = {a1, a2, . . . , aN } (4)

containing the equilibrium radii of the electrons. Using the above definitions we obtain the
rotating frame Lagrangian in a concise N-vector notation:

Lmag = I

2

(
ω2 − B2

4

)
+

1

2
(ẋTẋ + ẏTẏ) + ω(xTẏ − ẋTy), (5a)

I = I0 + 2aTx + xTx + yTy, (5b)

I0 = aTa = a2. (5c)

Here, ω = χ̇ − B/2 and the superscript T is used to denote transposed vectors and matrices.
The introduction of the frame rotation angle χ as an additional degree of freedom is

balanced by a constraint [18]

aTy = 0, (6)

expressing the elimination of the total angular momentum in the Eckart frame.
We use the harmonic approximation for the potential energy V . That is, we expand V in

the Taylor series in the vicinity of the equilibrium configuration and take into account only the
second-order term. This term is a quadratic form which in the N-vector notation reads

V2 = 1
2 {xTAx + yTDy + xTBy + yTBTx}. (7)

The matrices A, B, and D are computed numerically with the aid of expressions given in
appendix A.
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In order to account for the condition (6) in an easy way we introduce a new set of collective
coordinates in place of y by means of a transformation

y = Qv, v = {v0, v1, . . . , vN−1}. (8)

The transformation matrix Q is constructed as follows. The first column of Q is taken equal
to the normalized vector (4), that is,

Qn,0 = (Q0)n, Q0 = a

|a| , (9)

and all the remaining columns are chosen orthogonal to Q0 and to each other. Thus, the matrix
Q is a real orthogonal matrix

QTQ = QQT = I, (10)

and in the new azimuthal coordinates the constraint (6) transforms to the condition v0 = 0,
that is, the mode v0 has to be excluded.

We further use the same transformation matrix Q to introduce the collective radial
coordinates

x = Qu. (11)

The mode u0 is the so-called breathing mode. In this mode, the radial displacements of the
individual electrons are proportional to their equilibrium radii an.

As discussed in appendix A, by virtue of the collective coordinates u and v the breathing
and rotational modes separate from the remaining 2N − 2 vibrational modes. Thus, we may
explicitly isolate these special modes and rewrite the matrices defining the potential quadratic
form V2 as

QTAQ =
(

3 0
0 Ã

)
, QTDQ =

(
0 0
0 D̃

)
, QTBQ =

(
0 0
0 B̃

)
. (12)

Here we took into account the fact that the frequencies of the breathing and rotational modes
equal

√
3 and 0, respectively, for any number of electrons.

Besides reduced (N −1)×(N −1)matrices (denoted by tildes) we also introduce reduced
vectors with (N − 1) components:

ũ = {v1, . . . , vN−1}, ṽ = {v1, . . . , vN−1}. (13)

In these new variables the two constituent parts of the Lagrangian become

Lmag = I

2

(
ω2 − B2

4

)
+

1

2
(u̇2

0 + ˙̃u
T ˙̃u + ˙̃v

T ˙̃v) + ω(ũT ˙̃v − ˙̃u
T
ṽ), (14a)

I = (|a| + u0)
2 + ũTũ + ṽTṽ, (14b)

and

V2 = 1
2 {3u2

0 + ũTÃũ + ṽTD̃ṽ + ũTB̃ṽ + ṽTB̃Tũ}. (14c)

2.2. Hamiltonian

The Hamiltonian is obtained from the Lagrangian (14a) in the standard way. We first define
the generalized momenta

M = ∂

∂χ̇
Lmag = ωI + ũT ˙̃v − ˙̃u

T
ṽ,

U0 = ∂

∂ u̇0
Lmag = u̇0

(15)
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and for 1 � n � N − 1

Ũ = ∂

∂ ˙̃u
Lmag = ˙̃u − ωṽn,

Ṽ = ∂

∂ ˙̃v
Lmag = ˙̃v + ωũ.

(16)

Expressing the velocities in terms of the generalized momenta from equations (15), (16) and
substituting them into

Hmag = Mχ̇ + U0u̇0 + Ũ ˙̃u + Ṽ ˙̃v − Lmag, (17)

after some algebraic manipulations we arrive at

H = 1

2Ib

(
M +

B Ib

2
− J

)2

+
1

2

{
U 2

0 +

(
Ũ − B

2
ṽ

)2

+

(
Ṽ +

B

2
ũ

)2}
+ V2. (18)

Here, the quantity J = ũTṼ − ŨTṽ expresses the sum of local electronic angular momenta,
and Ib = (|a| + u0)

2.
The first term of the Hamiltonian apparently still poses a considerable challenge as it

includes coupling between different modes. Nevertheless, analysing the nature and relative
magnitudes of the terms inside the parentheses we find that the following approximation can
be made:

1

2Ib

(
M +

B|a|2
2

+ B|a|u0 +
Bu2

0

2
− J

)2

→ B2u2
0

2
. (19)

Briefly, the local angular momentum operator J may be omitted since it is of order 1 and
symmetric in coordinates ũ, so that its action is not enhanced by anisotropy, and the same
applies to the term 1

2 Bu2
0. The terms M and 1

2 B|a|2 are both large (∼B); however, in the
ground state the system chooses its angular momentum so as to maximally compensate the
magnetic field term. Only due to the integer quantization of M is there a remainder of the
order of unity, which also may be safely neglected.

Thus, we are left with a single largest term under the parentheses (B|a|u0 ∼ B1/2), and
approximating the denominator to the lowest order Ib ≈ I0 we arrive at

H = 1

2
(U 2

0 + B2u2
0) +

1

2

(
W − i

B

2
Gw

)2

+
1

2
wTVw. (20)

Here we introduced double-size vectors composed of two (N − 1)-vectors:

w = {ũ, ṽ}, W = {Ũ , Ṽ }, (21)

and the corresponding (2N − 2)× (2N − 2) matrices—a symmetric potential matrix

V =
( Ã B̃
B̃T D̃

)
(22)

and a Hermitian rotation matrix

G =
(

0 −iĨ
iĨ 0

)
, (23)

with Ĩ denoting the (N − 1)× (N − 1) unity matrix.
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2.3. Riccati equation

We now proceed to the solution of the Schrödinger equation

(H − E)� = 0, (24)

with H given by equation (20). The breathing mode separates and its (unnormalized)
wavefunction reads

ψ0(u0) = e−Bu2
0/2. (25)

The remaining modes are more difficult to treat due to effects of the potential anisotropy (the
sensitivity to the substitution ũ � ṽ) discussed in appendix B on the basis of a single two-
dimensional anisotropic oscillator. However, since the potential is parabolic we are enabled
to look for the ground state wavefunction in the form of a Gaussian, i.e., an exponentiated
quadratic form, and we write the wavefunction of all 2N − 2 vibrational modes as

ψ = exp

(
− B

4
wTXw

)
, (26)

with an unknown complex symmetric (2N − 2)× (2N − 2) matrix X .
We substitute equation (26) into the Schrödinger equation and recall that

W = −i
∂

∂w
. (27)

Performing a straightforward calculation and equating the coefficients that multiply different
powers of coordinates we obtain the following two equations:

E = B

4
Tr X , (28a)

X 2 + GX − XG − I − 4

B2
V = 0. (28b)

The first of these equations is an expression for the energy, while the second one is a quadratic
matrix equation (the Riccati equation [25]) whose solution allows one to obtain the unknown
matrix X .

2.4. Solution

Although equation (28b) includes a small parameter B−2 we cannot make direct use of it due
to the degeneracy of the problem. Therefore, we have to solve this equation exactly.

In a standard approach [25], the solution of the Riccati equation is mapped onto the spectral
problem of an auxiliary (4N − 4)× (4N − 4) supermatrix

M =
( G −I

−(4V/B2 + I) G
)
, (29)

composed of the coefficients of equation (28b). As shown in [26], a physical interpretation of
such a procedure is possible and amounts to the transition from the Schrödinger equation to
the dynamic Heisenberg equations.

Indeed, introducing two (2N − 2)× (2N − 2) matrices

U1 = −X + G, (30a)

U2 = GX − 4V/B2 − I, (30b)

we cast the Riccati equation into a system of three equations:

XU1 = U2, (31a)

GU1 − U2 = U1U1, (31b)

−(4V/B2 + I)U1 + GU2 = U2U1. (31c)
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The first one is readily solved

X = U2U−1
1 , (32)

and transforms the remaining two into a matrix equation

MU = UU1, (33)

where we introduced a tall matrix:

U =
(U1

U2

)
, (34)

with the number of rows twice that of columns.
The equation obtained, (33), resembles an eigenvalue problem written in a matrix form:

MU = UL. (35)

Here, the matrix U is made up of eigenvectors of M arranged columnwise, and L is a diagonal
matrix of the corresponding eigenvalues. Note that the matrix U may be restricted to a subset
of the eigenvectors, as is the case in equation (33) where the number of columns in U is one
half of the number of rows. Correspondingly, the matrix L should also be a smaller matrix
whose order is equal to the number of columns in U .

Moreover, equation (35) possesses many solutions since this equation is invariant with
respect to the transformation

U → UK, L → K−1LK, (36)

with an arbitrary nondegenerate matrix K.
Comparing equations (33) and (35) we see that the modified eigenvalue problem becomes

equivalent to the Riccati problem if we are able to find a transformation K connecting

U1K = K−1LK. (37)

However, this step is inessential since the sought solution

X = (U2K)(U1K)−1 = U2U−1
1 (38)

is invariant with respect to the above transformation.
Let us point out that due to the very simple structure of the supermatrix (29) there exists

a relation

U2 = GU1 − U1L, (39)

which allows us to write down the final solution to the Riccati equation in the form

X = G − U1LU−1
1 . (40)

Employing the considerations outlined in [26] one may show that the eigenvalues of the matrix
M come in pairs ±λn (0 � n < 2N − 2). It follows then from equation (40) that we must
pick all negative eigenvalues in order to obtain a positive definite X which ensures the correct
behaviour of the wavefunction (26).

In summary, the Riccati equation (28b) is solved using the following steps: (i) a large
auxiliary matrix M is set up, (ii) its eigenvalues and eigenvectors are found, and (iii) the
negative part of the spectrum is used to compose U1 and U2. The final result is given by
equation (40).

As a matter of fact, the above procedure is numerically unstable at magnetic fields B � 1
since in this limit the eigenvalues of M condense into nearly degenerate clusters located
around 0 and ±2 (while those of the original Schrödinger equation condense into the Landau



3858 A Matulis and E Anisimovas

levels). Thus it is advisable to find the spectral information on M using a more stable Schur
decomposition:

MU = US (41)

which resembles equation (35), except that the diagonal eigenvalue matrix L is replaced by an
upper triangular Schur matrix S with the same eigenvalues on the diagonal.

We employed this procedure to obtain the results discussed in the following section. The
numerical routine was built around several calls to the LAPACK numerical library [27].

3. Correlation functions

Equations (26) and (25) express the quasiclassical many-electron wavefunction as a function
of the collective coordinates u and v. We obtain the wavefunction in the x and y coordinates
of the rotating frame employing the transformationQT, inverse to that applied in equations (8)
and (11).

The transformation back to the laboratory coordinates (ξ,η) is accomplished by
generalizing the procedure described in section 6 of [18]. Considering the modified versions
of equations (31)–(36) of [18] we obtain

x = ξ, (42a)

y = (1 − Q0Q
T
0 )η, (42b)

with the vector Q0 defined in equation (9). Thus, the radial coordinates of the two frames
coincide, while the azimuthal ones are connected by a projection operator which ensures the
elimination of the rotation mode. Therefore, transformation of the vibrational wavefunction
to the laboratory frame preserves the wavefunction form and only replaces the coordinates.

The knowledge of the wavefunction provides complete information on the distribution of
charge and currents in a quantum dot. In the following discussion, we confine our attention to
the distribution of charge since (as is shown in [18]) the distribution of charge also determines
the distribution of currents. The electron charge density itself is of limited interest as this
quantity retains the full symmetry of the Hamiltonian and hides the manifestation of the inter-
particle correlation in the internal structure of a quantum dot. In order to reveal this structure,
which is of primary interest to us, we calculate the density–density correlation function.

Generally, this function is interpreted as the conditional distribution of the charge density
as a function of coordinate r given that one electron is pinned at a certain reference point
r0. Restricting our consideration to the quasiclassical limit we can obtain this function in
a rather simple way. The point is that in this regime the electrons become individualized
by crystallizing into non-overlapping charge density lumps, each centred at the respective
equilibrium position. Thus, the correlation function is only non-zero in the vicinity of one of
the crystallization points and can be expressed as a sum of the partial contributions due to the
individual electrons. Therefore, we evaluate the correlation function in the following manner:

(i) the coordinates of the pinned electron are set to zero as we always choose to fix the
reference electron in its equilibrium position, and

(ii) the coordinates of all remaining electrons—except the one whose contribution we are
interested in—are integrated over.

We perform the integration procedure numerically since the matrix of the quadratic form
X as well as its transformation to the local coordinates are known only numerically. The
integration over the kth variable is done by forming a complete square and can be formulated
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as a transformation of the matrix X : all matrix elements Xik and Xki are set to zero while the
remaining entries transform according to

Xi j → Xi j − XikXk j

X 2
kk

i, j �= k. (43)

The result of a complete series of steps (43) is the partial contribution of one of the electrons
to the total correlation function which we obtain in the form of a Gaussian function. Note that
we are able to disregard the normalization of the wavefunction in the intermediate steps and
only normalize the final result to unity. The constant density lines obtained from a Gaussian
function are ellipses which we characterize by determining the ratio of the major and minor
axes and their orientation with respect to the local x, y frames.

3.1. Single-ring quantum dots

When the number of electrons in a parabolic quantum dot is 2 � N � 5, the electrons
crystallize into a single ring with equilibrium positions arranged at equal intervals. In this case
we are able to compare our results to those obtained from an earlier calculation [18] which,
besides being limited to single-ring configurations, does not take the potential anisotropy into
account.

For the simplest, two- and three-electron, quantum dots we obtain a quadratic form of the
wavefunction identical to that given in equation (21b) of [18]. This agreement stems from
the complete absence of anisotropy in the potential (22) which we also verified by an analytic
calculation. As a consequence, in the correlation functions we find charge density ellipses
elongated in the azimuthal direction with the ratios of axes

p2 = √
3 ≈ 1.732, p3 =

√
5
2 ≈ 1.581, (44)

for two- and three-electron quantum dots, respectively.
However, for quantum dots with four and five electrons we do find that the potential is

anisotropic and the ratios of axes are

p4 =






1.402

1.444

(1.528)

, p5 =






1.218

1.263

(1.5).

(45)

The two top lines in equation (45) correspond, respectively, to the electrons that neighbour the
pinned one and the remote ones. The bottom line shows the result obtained from [18], which
is the same for all electrons. The correlation functions are sketched in figure 1. Here, the
full lines indicate the elliptic shapes of charge density lumps obtained from the present theory
and are compared to the earlier proposed results drawn by the dotted lines. These plots are
meant to indicate only the shape of the charge density lumps and not their absolute dimensions
which scale as B−1/2. We see that in the case of four-electron quantum dots, the effects due
to the potential anisotropy turn out to be small and the difference between the two sets of
lines is hardly discernible. On the other hand, for five-electron quantum dots (which were not
considered in [18]), the disagreement is quite conspicuous.

Thus, we conclude that the proper account for the potential anisotropy makes two notable
and reasonable changes. For one thing, the ratio pN now indicates a general decreasing
behaviour with increasing electron number N . This is very natural, since a greater number of
electrons on the ring leaves less freedom for azimuthal motion. Moreover, now the electrons
neighbouring the pinned one have less azimuthal freedom than the remote ones.
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(a) (b)

Figure 1. Correlation functions of four- (a) and five-electron (b) quantum dots. Full (dotted) lines
indicate the shape of the charge density lumps with (without) inclusion of the potential anisotropy.

3.2. More than one electron ring

When the number of electrons in a parabolic quantum dot is N = 6 or higher the configuration
in which a single ring accommodates all electrons is not the energetically preferred one, and a
shell structure develops [19]. Being equipped with a computational scheme capable of treating
general configurations, we shall now take a look at two-ring systems.

As a matter of fact, when the number of electrons is 6 � N � 8 the inner shell consists of
but one electron located in the minimum of the confining potential, and the remaining N − 1
electrons sit equidistantly on the outer ring. This configuration turns out to be quite similar to
the single-ring structure.

Calculating the elongations of the charge density ellipses for this case we obtain

p6 =
{

1.611

1.735
, p7 =






1.400

1.493

1.522

, p8 =






1.208

1.276

1.309.

(46)

Here, as before, the top line belongs to the nearest neighbours of the pinned electron and the
following lines to the second-and third-(if such exist) nearest neighbours. The charge density
lump of the central electron has a nearly circular shape and we will not consider it in more
detail. The results (46) follow the same trend as those of single-ring systems (equation (45)),
thereby confirming the likeness of these two configurations.

A notable qualitative difference (albeit quantitatively small) is that the major axes of the
ellipses in the present case do not always point in the azimuthal (y) direction. Generally, they
are rotated by a small angle which does not exceed 2.5◦.

For even greater number of electrons (N � 9), at least one well defined (that is, not
reducing to a single point) inner ring is present. Among these systems, in nine- and ten-electron
quantum dots the inner ring consists of a two-electron dumb-bell which in turn deforms the
outer ring of electrons. Thus, the ground state configuration of these quantum dots is not
circularly symmetric, and has an elliptic shape.

Let us consider the ten-electron quantum dot whose ground state configuration still retains
a considerable degree of symmetry, namely, two perpendicular symmetry axes. However, as
we will see shortly, the dynamical stability of this remaining symmetry of the ten-electron
quantum dot is very weak.

Figure 2 shows the correlation functions obtained in two cases when an electron in either
outer (panel (a)) or inner ring (panel (b)) is pinned. The situation in the outer ring resembles
that found in simpler quantum dots—when one electron is pinned the charge densities of the
remaining ones assume a slightly elongated elliptic shape. However, in the present case the
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(a) (b)

Figure 2. Correlation functions of a ten-electron dot. The conditional distribution of the charge
density when an electron in the outer (a) or inner (b) ring is pinned.

Figure 3. Monte Carlo trajectories of a ten-electron quantum dot. The dots mark the equilibrium
positions of electrons.

major axes of the ellipses may deviate quite a lot (up to 24◦) from the azimuthal direction.
The inner shell electrons are relatively free to perform the azimuthal motion, and their charge
density ellipses are characterized by ratios of axes around 3.

Likewise, when an electron of the inner shell is pinned, the ellipses of the outer ring charge
density lumps are visibly elongated in the azimuthal direction with the ratio of axes reaching
10. This value corresponds to roughly the same angular extent as in the previous case of the
response of the inner electrons to the pinning of an outer one.

These facts hint at the weakness of the angular correlation between the different shells
and ease of the inter-shell rotation. Indeed, inspecting the eigenvalues of the potential matrix
we find a very small eigenvalue λ1 = 1.5 × 10−9, to be compared to the second lowest
λ2 = 4 × 10−3.

We would also like to point out that the above-discussed weak stability of the ten-electron
quantum dot is already visible from the final snippets of the Monte Carlo trajectories shown in
figure 3. While performing the simulation the most distant electron was kept on the positive
part of the x axis by supplementing Monte Carlo steps with a rotation of the dot as a whole.
We see that the two inner electrons first reach positions on the inner circle slightly off the x
axis, and then slowly relax to the equilibrium positions on the x axis, whereas the remaining
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electrons approach their equilibrium positions from more or less random directions. The
energy change associated with this last leg of trajectories is only of the order of 10−6, seven
orders of magnitude below the total energy of this configuration (E ≈ 35.6).

In conclusion, we developed a mathematical framework for calculation of the ground
state of many-electron parabolic quantum dots in strong magnetic fields. Using this scheme
we demonstrated that the anisotropy of the potential felt by the electrons influences the electron
density even in the limit of infinite magnetic fields and therefore must be taken into account. The
correlation functions show a substantial deformation of Wigner molecules and the possibility
of soft modes related to the inter-shell rotation.

Appendix A. Symmetries of the parabolic dot

A parabolically confined quantum dot possesses a number of symmetries that significantly
aid the solution of the many-electron problem. Among these are: (i) the separation of the
centre of mass motion [2, 28], (ii) decoupling of the rotation of the system as a whole
which takes places under much more general conditions of the isotropic confinement, and
(iii) separation of the breathing mode [29, 30]. In this appendix, we present the calculation of
the potential matrix needed in the main text which also provides an immediate proof of the above
point (iii).

Since the Coulomb interaction is invariant with respect to rotations of the system as a whole,
we use the potential (2) expansion in the laboratory frame. The equilibrium configuration is
found by equating the first derivative to zero:

Vn = ∇n V |rn=an = an − λ

N∑

m,n=1
m �=n

an − am

|an − am |3 = 0, (A.1)

and the second term—the potential matrix itself—reads

Vnm = (∇n ⊗ ∇m V )|rn=an = δnm + [1 − δnm]

{
λ

|an − am |3 − 3λ
(an − am)⊗ (an − am)

|an − am |5
}

− δnm

N∑

m,n=1
m �=n

{
λ

|an − am |3 − 3λ
(an − am)⊗ (an − am)

|an − am |5
}
, (A.2)

with the symbol ⊗ denoting the outer product of two vectors.
Multiplying the matrix element (A.2) by the vector am , performing the summation over

m and taking into account equation (A.1) we obtain

N∑

m=1

Vnmam = an + 2λ
N∑

m,n=1
m �=n

an − am

|an − am |3 = 3an. (A.3)

Thus we establish that the vector {a1,a2, . . . ,aN } or the same vector written in the local
frame

a = {a1, a2, . . . , aN } (A.4)

is an eigenvector of the potential matrix corresponding to the eigenvalue 3 for any number of
electrons. That is, an electron system in a parabolic confinement has a separable universal
breathing mode.
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Appendix B. Electron in anisotropic parabolic potential

A general consideration of the problem of the anisotropic harmonic oscillator in a magnetic
field is given in [31]. Here we provide a shortcut calculation of the ground state emphasizing
the persistence of effects due to the potential anisotropy even in the limit of extreme magnetic
fields.

We consider the Hamiltonian

H = −1

2

[(
∂

∂x
− i

B

2
y

)2

+

(
∂

∂y
+ i

B

2
x

)2]
+

1

2
(ax2 + by2), (B.1)

and look for the ground state wavefunction of the form

�(r) = exp{− 1
2 (F1x2 + F2 y2 + 2iGxy)}. (B.2)

Inserting (B.2) into the stationary Schrödinger equation (H − E)�(r) = 0 and collecting the
coefficients of terms proportional to x2, y2, xy and 1 we generate the following set of coupled
equations:

−F2
1 + (B/2 − G)2 + a = 0,

−F2
2 + (B/2 + G)2 + b = 0,

F1(B/2 + G)− F2(B/2 − G) = 0,

F1 + F2 − 2E = 0,

(B.3)

for four unknowns: F1 (2), G and E .
Solving the first two equations for F1 (2), substituting the result into the third equation and

simplifying we obtain

a(B/2 + G)2 = b(B/2 − G)2, (B.4)

and express G in terms of the potential anharmonicity:

G = −Bδ, δ =
√

b − √
a√

b +
√

a
. (B.5)

With this result we finally arrive at the coefficients F1 (2) which define the electron density:

F1 (2) = [
B2

(
1
2 ± δ

)2
+ a

]1/2 ≈ B
(

1
2 ± δ

)
. (B.6)

We emphasize that the deformation is essential even in the extreme B → ∞ case, which
could be anticipated due to the degeneracy of the problem. In contrast, the influence of the
symmetric part of the confining potential decays as 1/B .
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